New PET Tracer Identified for Imaging Tau in Alzheimer’s Disease Patients

December 5, 2018

RESTON, Va. – In the diagnosis of Alzheimer’s disease and the search for effective treatments, tau tangles in the brain have joined amyloid build-up as markers of the disease and potential therapy targets. In the December issue of The Journal of Nuclear Medicine, the featured article of the month reports on the identification of a promising second-generation positron emission tomography (PET) tracer for imaging and measuring tau pathology.

“We compared three novel tau-specific radiopharmaceuticals—11C-RO-963, 11C-RO-643, and 18F-RO-948—that showed pre-clinical in vitro and in vivo promise for use in imaging human tau (Honer et al., JNM, April 2018),” explains Dean F. Wong, MD, PhD, Johns Hopkins University professor of radiology, neurology, psychiatry and neurosciences and director of the Division of Nuclear Medicine's Section of High Resolution Brain PET Imaging.

In this first human evaluation of these novel radiotracers, healthy humans and patients with Alzheimer’s disease (AD) were studied using an innovative study design to perform head-to-head comparisons of the three compounds in a pairwise fashion. Wong states, “This design allowed us to select one radioligand, 18F-R0-948, as the most promising second-generation tau radiopharmaceutical for larger scale use in human PET tau imaging.”

Over all brain regions and subjects, the trend was for 18F-RO-948 to have the highest standardized uptake value (SUVpeak), followed by 11C-RO-963 and then 11C-RO-643. Regional analysis of SUV ratio and total distribution volume for 11C-RO-643 and 18F-RO-948 clearly discriminated the AD group from the healthy control groups. Compartmental modeling confirmed that 11C-RO-643 had lower brain entry than either 11C-RO-963 or 18F-RO-948 and that 18F-RO-948 showed better contrast between areas of high versus low tau accumulation.

Subsequent analysis therefore focused on 18F-RO-948. Both voxelwise and region-based analysis of 18F-RO-948 binding in healthy controls versus AD subjects revealed multiple areas where AD subjects significantly differed from healthy controls. Voxelwise analysis also revealed a set of symmetric clusters where AD subjects had higher binding than healthy controls.

“Importantly, this new tracer appears to have much less off-target binding than was reported for existing tau tracers,” notes Wong. “Especially, it has less binding to the choroid plexus adjacent to the hippocampus, which has confounded interpretation of mesial temporal tau measured by first generation PET Tau tracers.”

He points out, “The significance of this research and the companion research reported in Kuwabara et al. in this same issue is that they describe in detail the selection and quantification of a second-generation tau PET imaging as a complement to amyloid imaging, allowing us to accurately measure tau pathology in living people and contributing to our understanding of the pathophysiology of Alzheimer’s and related dementias. Better Tau PET radiopharmaceuticals also provide the promise of improved target engagement and monitoring of anti-tau treatments in future Alzheimer’s clinical trials.”

Collaboration has been key to this research process. Wong emphasizes, “These findings demonstrate the impact of the complementary strengths of preclinical, translational and clinical research with university PET and memory experts, NIH aging experts and dedicated imaging neuroscientists in the pharmaceutical industry to approach one of the greatest global public health challenges—i.e., Alzheimer’s disease, where there is still no definitive cure. Improved biomarkers such as PET imaging of tau and, in the future, other dementia-implicated proteins are vital to reducing the enormous costs of drug development (typically $1B-$2B a year per drug) and eventually understanding and treating Alzheimer’s.”


FIGURE: Checkerboard plot showing 18F-RO-948-positivity results (black cells: bilaterally positive; gray cells: unilaterally positive) of anterior and posterior Braak regions (19), and estimated Braak stages (right column) (20). esV = extrastriatal visual cortex; Fs = fusiform gyrus; Hp = hippocampus; mTp = middle temporal cortex; prV = primary visual cortex; sTp = superior temporal cortex; tER = transentorhinal cortex. Credit: DF Wong et al., Johns Hopkins University, Baltimore, MD.

Authors of “Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects” include Dean F. Wong, Hiroto Kuwabara, Paul B. Rosenberg, Esther Oh, Constantine G. Lyketsos, Noble George, Lorena Gapasin, Kelly Kitzmiller, Josh Roberts, Ayon Nandi, James Brasic, Chakradhar Mishra, Abhay Moghekar, Anil Mathur, Marilyn Albert, and Robert F. Dannals, Johns Hopkins University, Baltimore, Maryland; Robert A. Comley, Susanne Ostrowitzki, Cristina Vozzi, Frank Boess, Michael Honer, Luca Gobbi, Gregory Klein, Jeff Sevigny, and Edilio Borroni, Pharma Research and Early Development, Hoffmann-La Roche, Basel, Switzerland; Susan M. Resnick  and Madhav Thambisetty, Lab of Behavior and Neuroscience, NIH’s National Institute on Aging Intramural Research Program, Baltimore, Maryland.

This study was funded by F. Hoffmann-La Roche in Basel, Switzerland. In addition, Susan Resnick and Madhav Thambisetty are supported by the Intramural Research Program of the National Institute on Aging.


To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or Current and past issues of The Journal of Nuclear Medicine can be found online at

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI’s more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings, and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit